Hepatitis E virus replication and interferon responses in human placental cells
نویسندگان
چکیده
Hepatitis E virus (HEV) is a member of the genus Orthohepevirus in the family Hepeviridae and the causative agent of hepatitis E in humans. HEV is a major health problem in developing countries, causing mortality rates up to 25% in pregnant women. However, these cases are mainly reported for HEV genotype (gt)1, while gt3 infections are usually associated with subclinical courses of disease. The pathogenic mechanisms of adverse maternal and fetal outcome during pregnancy in HEV-infected pregnant women remain elusive. In this study, we observed that HEV is capable of completing the full viral life cycle in placental-derived cells (JEG-3). Following transfection of JEG-3 cells, HEV replication of both HEV gts could be observed. Furthermore, determination of extracellular and intracellular viral capsid levels, infectivity, and biophysical properties revealed production of HEV infectious particles with similar characteristics as in liver-derived cells. Viral entry was analyzed by infection of target cells and detection of either viral RNA or staining for viral capsid protein by immunofluorescence. HEV gt1 and gt3 were efficiently inhibited by ribavirin in placental as well as in human hepatoma cells. In contrast, interferon-α sensitivity was lower in the placental cells compared to liver cells for gt1 but not gt3 HEV. Simultaneous determination of interferon-stimulated gene expression levels demonstrated an efficient HEV-dependent restriction in JEG-3. Conclusion: We showed differential tissue-specific host responses to HEV genotypes, adding to our understanding of the mechanisms contributing to fatal outcomes of HEV infections during pregnancy. Using this cell-culture system, new therapeutic options for HEV during pregnancy can be identified and evaluated. (Hepatology Communications 2018;2:173-187).
منابع مشابه
Comparison of PEG Interferon Loaded and non-Loaded Iron Oxide Nanoparticles on Hepatitis C Virus Replication in Cell Culture System
Background and Aims: Iron oxide nanoparticles are among the most effective tools which can replace current medical techniques for diagnosis and treatment of various diseases. Hepatitis C infection is one of the main health problems in the world, affecting around 3% of the world's population. This infection can develop into liver cirrhosis and liver cancer over the time in 80% of patients. In t...
متن کاملHuman Reoviruses Serotype 3 Effectively Target Huh-7 Cells
Abstract: Background and Aims: Huh-7 is a cell line that was derived from a liver tumor of a Japanese man. Hepatocellular carcinoma (HCC) is considered as a primary liver cancer. Highly resistant tumor to treatment which causes the death of many patients annually. Thus, targeting the cancer cells by using a new method could be effective in...
متن کاملInnate immune responses in human hepatocyte-derived cell lines alter genotype 1 hepatitis E virus replication efficiencies
Hepatitis E virus (HEV) is a significant health problem in developing countries causing sporadic and epidemic forms of acute viral hepatitis. Hepatitis E is a self-limiting disease; however, chronic HEV infections are being reported in immunocompromised individuals. The disease severity is more during pregnancy with high mortality (20-25%), especially in third trimester. Early cellular response...
متن کاملAntiviral Profile of Brown and Red Seaweed Polysaccharides Against Hepatitis C Virus
Hepatitis C virus (HCV) has infected 3% of the population worldwide and 20% of the population in Egypt. HCV infection can lead to hepatocellular carcinoma and death. The presently available treatment with interferon plus ribavirin, has limited benefits due to adverse side effects. Seaweeds have become a major source of new compounds to treat viral diseases. This work aimed to study the effect o...
متن کاملHepatitis E virus persists in the presence of a type III interferon response
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E v...
متن کامل